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Abstract: - In this article, we propose a new approach for the churn analysis. Our target sector is Telecom 
industry, because most of the companies in the sector want to know which of the customers want to cancel the 
contract in the near future. Thus, they can propose new offers to the customers to convince them to continue 
using services from same company. For this purpose, churn analysis is getting more important. We analyze 
well-known machine learning methods that are logistic regression, Naïve Bayes, support vector machines, 
artificial neural networks and propose new prediction method. Our analysis consist of two parts which are 
success of predictions and speed measurements. Affect of the dimension reduction is also measured for the 
analysis. In addition, we test our new method with a second dataset. Artificial neural networks is the most 
successful as we expected but our new approach is better than artificial neural networks when we try it with 
data set 2. For both data sets, new method gives the better result than logistic regression and Naïve Bayes. 
 
Key-Words: - artificial neural networks, churn analysis, logistic regression, Naïve Bayes, support vector 
machines. 
 

1 Introduction 

One of the recent studies about customer churn 
analysis was published in May, 2017 entitled 
‘Customer Churn Analysis with Machine Learning 
Techniques’ [1]. In this study, the authors tried to 
generate three models wtih using support vector 
machines, Naive Bayes classifier and multi layer 
artificial neural networks algorithms. They worked 
on 4667 customer data with 21 features and two 
target label/class. Test data and training data are 
divided in to two parts with 25 and 75 percentage 
correspondingly. As a result of this study, the most 
successful method is artificial neural networks and 
second one is Naive Bayes classifier. They have 
also explained some features as a reason of the 
failure for support vector machines and the 
insufficient number of the customer data. Another 
study, about the customers in telecommunication 
sector has pointed to importance of the data pre-
processing before implementing the learning 
techniques [2]. Choosing the customers and the 
features correctly makes the algorithms more 
efficient. In this study, the authors explain the six 
phase of pre-processing as understanding the aim of 
the work, understanding the data, processing the 
data, modelling and development. However, they 
worked about particularly on decreasing and 
preparing the data. 

Decreasing the data is choosing relevant features 
from dataset and preparing the data is converting the 

data to suitable format for the learning algorithms. 
Value conversion is defined as converting the 
continues data to discrete data. Value conversion 
methods can analyse the missing values as a 
different category. This part of the study is well 
suited for the methods like logistic regression.  In 
[3], the authors also use decision trees for the 
conversion of continuous values to discrete values. 
Their data is consisting of 30,104 customer data 
with 156 discrete and 800 continuous features. As a 
result, it is said that the data pre-processing is 
increasing the success of the predictions up to %34. 
In recent studies, deep learning techniques are tried 
to use to make predictions about customer churn [3]. 
They worked on unsupervised learning techniques 
and pointed to importance of decreasing the data 
size. As a result, they express that the deep learning 
techniques give almost the same result with 
unsupervised learning techniques, but it needs to 
improve.   
 In another study in the literature, recursive neural 
network is developed and according to the results 
the model has shown high performance for 
predicting the behaviour of the customers [4]. 
Another advantage of recursive neural networks is 
that it does not need any data pre-processing steps. 
It is said that the model had showed same or better 
results with other vector-based results like logistic 
regression. For similar methods such as logistic 
regression, neural networks and random forests, 
fixed length vectors should be used, however 
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Fig.  3. Work Flow of New Approach 

First of all, we use Naïve Bayes model and 
logistic regression model with coefficients for each 
feature by using same train data set. We use test 
data set with the models that is used with train data 
set for prediction. Multiplication of two 
probabilities Li and Pi from two models is used to 
determine class of each data. If multiplication of 
two probability is greater than 0,5 then class is 
written as 1 otherwise 0. Class value 1 means that 
there can be customer churn otherwise it means no 
churn. In the literature, there are some similar 
hybrid methods that the authors used average of the 
probabilities [9]. We also try the method, but our 
approach gives better results for churn analysis. 
Confusion matrix of our new methods can be seen 
from the Table 4. 

Table 4. Confusion Matrix of New Approach for 

Data Set 1 

 Predicted Class 

 
Actual Class 

 1 0 

1 TP: 32 FP: 261 

0 FN: 23 TN: 1517 

Performance measurements of the method are 
calculated in the Table 5. 
 
 
 
 

Table 5. Performance Measurements of New 

Approach for Data Set - I 

Accuracy 0.8451 

Fault Rate 0.1549 

Precision 0.5818 

Recall 0.1092 

F-Score  0.1839 

 
When we compare our method with NB and LR 
separately, accuracy is better than them, but we need 
to make better fault rate and precision. To be sure, 
the method is tested with a second dataset. 
Confusion matrix of the method by using second 
data set can be seen from Table 5. Accuracy with 
second data set is %79.73 for new method, on the 
other hand accuracy of ANN method with second 
dataset is %78.4 which is less than our new 
approach. 

 

Fig. 4. Accuracy of New Method Comparing to 

Other Methods 

 

5  Conclusions 

In our article, firstly we measure the time for the 
well-known machine learning methods that are 
SVM, NB, ANN, and LR for the churn analysis. We 
compare the time to understand how dimension 
reduction in data set affects. ANN is the slowest 
method and LR is the fastest one. However, 
dimension reduction has the biggest effect on SVM, 
so it can be logical to reduce dimension of the data 
set if SVM will be used. On the other hand, when 
ANN, LR and NB is used, dimension reduction does 
not make any sense as the manner of time but it 
reduce the accuracy of the methods, thus dimension 
reduction is not recommended when we use the 
methods for churn analysis. 
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We propose a new approach by using LR and 
NB and tested it with two different datasets. For the 
data set 1, our new method shows better 
performance than LR and NB but not ANN. When 
we try it with data set 2, new method shows the best 
performance even more than ANN. As a result, even 
new approach has high prediction rate, there are 
another performance measurement that is needed to 
improve like precision, recall and fault rate. In 
general, ANN gives the highest result as we 
expected. Furthermore, from this study we 
understand that dimension reduction is not always 
good idea.  
 
References: 

 
[1] O. Kaynar, M. Tuna, Y.Görmez, M. 

Deveci,“Makine öğrenmesi yöntemleriyle 
müşteri kaybı analizi”, C.Ü. İktisadi ve İdari 
Bilimler Dergisi, Cilt 18, Sayı 1, 2017. 

[2] K.Coussement, S. Lessmann, G. Verstraeten, “A 
Comparative Analysis of Data Preparation 
Algorithms for Customer Churn Prediction: A 
Case Study in the Telecommunication 
Industry”, Decision Support Systems, 95 (2017) 
27–36 . 

[3] P. Spanoudes, T. Nguyen, “Deep Learning in 
Customer Churn Prediction: Unsupervised 
Feature Learning on Abstract Company 
Independent Feature Vectors”,Cornell 
University, March, 2017.  

[4] T. Lang, M. Rettenmeier, “Understanding 
Consumer Behavior with Recurrent Neural 
Networks”, Zalando SE Techblog, 2017. 

[5]  [5] T.Zhang, X.Cheng, M.Yuan, L.Xu, 
C.Cheng, K.Chao, “Mining Target Users for 
Mobile Advertising Based on Telecom Big 
Data”, 6th International Symposium on 
Communications and Information Technologies 
(ISCIT), 26-28 Sept. 2016. 

[6] C.Cheng, X.Cheng, “Anovel Cluster Algorithm 
for Telecom Customer Segmentation”, 
International Symposium on Communications 
and Information Technologies (ISCIT), 26-28 
Sept. 2016. 

[7] BIGML,https://bigml.com/user/bigml/gallery/da
taset/4f89bff4155268645c000030, 10.01.2018. 

[8] IBM, 
https://www.ibm.com/communities/analytics/wa
tson-analytics-blog/predictive-insights-in-the-
telco-customer-churn-data-set/, 12.03.2018. 

[9] A. Chaudhary, S.Kolhe, R.Kamal, “A Hybrid 
Ensemble for Classification in mutliclass 
datasets: An application to Oilseed Diasease 
Dataset”, Computers and Electronics in 
Agriculture, April, 2016. 
 

WSEAS TRANSACTIONS on COMMUNICATIONS Melike Günay, Tolga Ensari

E-ISSN: 2224-2864 70 Volume 18, 2019




